A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus.

نویسندگان

  • M J Hewitt
  • R Meddis
چکیده

A computer model is presented of a neural circuit that replicates amplitude-modulation (AM) sensitivity of cells in the central nucleus of the inferior colliculus (ICC). The ICC cell is modeled as a point neuron whose input consists of spike trains from a number of simulated ventral cochlear nucleus (VCN) chopper cells. Input to the VCN chopper cells is provided by simulated spike trains from a model of the auditory periphery [Hewitt et al., J. Acoust. Soc. Am. 91, 2096-2109 (1992)]. The performance of the model at the output of the auditory nerve, the cochlear nucleus and ICC simulations in response to amplitude-modulated stimuli is described. The results are presented in terms of both temporal and rate modulation transfer functions (MTFs) and compared with data from physiological studies in the literature. Qualitative matches were obtained to the following main empirical findings: (a) Auditory nerve temporal-MTFs are low pass, (b) VCN chopper temporal-MTFs are low pass at low signal levels and bandpass at moderate and high signal levels, (c) ICC unit temporal-MTFs are low pass at low signal levels and broadly tuned bandpass at moderate and high signal levels, and (d) ICC unit rate-MTFs are sharply tuned bandpass at low and moderate signal levels and flat at high levels. VCN and ICC units preferentially sensitive to different rates of modulation are presented. The model supports the hypothesis that cells in the ICC decode temporal information into a rate code [Langner and Schreiner, J. Neurophysiol. 60, 1799-1822 (1988)], and provides a candidate wiring diagram of how this may be achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of amplitude modulation on the coding of interaural time differences of low-frequency sounds in the inferior colliculus. I. Response properties.

Most sounds in the natural environment are amplitude-modulated (AM). To determine if AM alters the neuronal sensitivity to interaural time differences (ITDs) in low-frequency sounds, we tested neuronal responses to a binaural beat stimulus with and without modulation. We recorded from single units in the inferior colliculus of the unanesthetized rabbit. We primarily used low frequency ( approxi...

متن کامل

Dynamic properties of the responses of single neurons in the inferior colliculus of the rat.

The responses of single cells in the central nucleus of the inferior colliculus of the rat were studied with characteristic frequency tones amplitude modulated by pseudorandom noise or sinusoidal waveforms, in order to investigate the degree to which these responses can be described by a linear model. When pseudorandom noise was used as the modulating waveform, period histograms of the response...

متن کامل

Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: experimental and modeling study.

Human listeners are sensitive to interaural time differences (ITDs) in the envelopes of sounds, which can serve as a cue for sound localization. Many high-frequency neurons in the mammalian inferior colliculus (IC) are sensitive to envelope-ITDs of sinusoidally amplitude-modulated (SAM) sounds. Typically, envelope-ITD-sensitive IC neurons exhibit either peak-type sensitivity, discharging maxima...

متن کامل

Analog very large-scale integrated (VLSI) implementation of a model of amplitude-modulation sensitivity in the auditory brainstem.

An analog very large-scale integrated (VLSI) implementation of a model of signal processing in the auditory brainstem is presented and evaluated. The implementation is based on a model of amplitude-modulation sensitivity in the central nucleus of the inferior colliculus (CNIC) previously described by Hewitt and Meddis [J. Acoust. Soc. Am. 95, 2145-2159 (1994)]. A single chip is used to implemen...

متن کامل

The responses of single units in the inferior colliculus of the guinea pig to damped and ramped sinusoids.

Temporal asymmetry can have a pronounced effect on the perception of a sinusoid. For instance, if a sinusoid is amplitude modulated by a decaying exponential that restarts every 50 ms, (a damped sinusoid) listeners report a two-component percept: a tonal component corresponding to the carrier and a drumming component corresponding to the envelope modulation period. When the amplitude modulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 95 4  شماره 

صفحات  -

تاریخ انتشار 1994